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The simplest case

Let’s make things easy for ourselves by considering 2 jet
production at LEP, which can be represented by a single Feynman
diagram at lowest order.

e−(p1) + e+(p2) → q(q1) + q̄(q2)

We can simplify even further:

? let’s assume all the particles are massless, p2
i = q2

i = 0

? forget about the Z for now, just imagine photon exchange

Gamma-matrix warmup exercise: show that the spin- and colour-
summed squared matrix element is given by
∑

|M|2 = 8Ne4Q2
(

(p1.q1)
2+(p1.q2)

2

(p1.p2)2

)
, where Q = quark charge.
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Adding QCD

To calculate the effect of NLO QCD, we have to add contributions
which are proportional to αs. In other words, we need a total of
two extra couplings of quarks to a gluon:

�

�

��

∼ gs

In general, we can attach gluons in more complicated ways

∼ gs ∼ g2
s
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NLO diagrams: I

One class of diagrams is immediate and corresponds to additional
gluon radiation

In our case, there are only two diagrams

∼ gs × gs ∼ αs

These are referred to as the real radiation contribution and, on the
surface, look like they should be easy to calculate since they are
just the lowest order matrix elements for e+e− → qq̄g

There’s another set of diagrams to consider though ...
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NLO diagrams: II

The other class of diagrams is referred to as the virtual
corrections and involves emission of the gluon from a quark and
reabsorption on the same, or a different, quark line

For us, there are 3 diagrams: two self-energies (‘bubbles’) and
one vertex correction (‘triangle’):

These diagrams contribute as an interference with the lowest
order diagram:

O(1) ×O(g2
s) = O(αs)

One calculates the NLO cross-section by summing the real and
virtual contributions
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The ‘easy’ piece

(In principle) we know how to calculate the real contribution

Applying the Feynman rules and working through the algebra is
fairly straightforward, but just from looking at the diagrams we can
learn much immediately:

e+

qe−

= q1 + q2 + k

p1 + p2

q̄

g

p1

p2

q1

q2

k

e−(p1) + e+(p2) →
q(q1) + q̄(q2) + g(k)

The intermediate quark propagator before the gluon emission
contributes a factor of

1

(q1 + k)2
=

1

2q1.k
, since q2

1 = k2 = 0.
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A closer look ...
Looking at the other diagram gives us another propagator to worry
about: 1

2q2.k

Since all our particles are massless, we can write their 4-vectors
in the form:

q1 = Eq(1, ~nq), q2 = Eq̄(1, ~nq̄), k = Eg(1, ~ng)

where ni is a unit vector in the direction of particle i

Our propagators are then given by

2q1.k = 2EqEg(1 − cos θqg), 2q2.k = 2Eq̄Eg(1 − cos θq̄g)

where θqg(θq̄g) is the angle between the gluon and the
(anti-)quark.

These propagators can clearly vanish in a number of cases
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Vanishing propagators

2q1.k = 2EqEg(1 − cos θqg)

the gluon and a quark
are collinear, θqg → 0

the gluon is soft, Eg → 0

Note: we don’t have to worry about a quark becoming soft. The
kinematics make the available phase space vanish. It would
require that the remaining anti-quark and gluon are back-to-back.

Together, these two problems are called infrared singularities
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Problems?
These singularities are not physical and, in fact, we could have
avoided them

We treated all our particles as massless
? Adding a mass to the gluon, or putting the quarks slightly

off-shell would turn these singularities into a logarithmic
divergence

? Nothing wrong with this, perhaps even physically motivated

However, introducing masses complicates the algebra and often
makes the ensuing calculations intractable
? Most NLO calculations assume quark masses vanish

whenever possible

The most common trick for proceeding is to use dimensional
regularization (DR):

D = 4 −→ D = 4 − 2ε
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Extra dimensions
All the singularities can now be controlled, manifesting
themselves as factors of 1

ε

Integrating our matrix elements poses no problems, with the
result:

σreal ∼
CF αs

2π

(
2

ε2
+

3

ε
+

19

2
+ O(ε)

)
σLO

We’ve used (tAtA)ij = CF δij to obtain the colour factor CF (= 4/3)

This is a trick for now: in the end we want to take ε → 0 of course.

Notice that, in particular, the ε poles are proportional to the lowest
order result. This is a crucial observation - more on this later.
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This is a trick for now: in the end we want to take ε → 0 of course.
Notice that, in particular, the ε poles are proportional to the lowest
order result. This is a crucial observation - more on this later.
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Virtual contribution
�

����

�

��

� � ��

� � �� � ��

d4` N
`2(`+q2)2(`+q1+q2)2

with N = . . . (ˆ̀+ q̂1 + q̂2)γ
µ ˆ̀. . .

This is not a back-of-the-envelope calculation, but again we don’t
have to go through all the details:
? We’re integrating over all loop momenta: but what about the

case ` = −q2? This is a soft singularity again.
? In fact, ` = xq2 for any value of x also makes two propagators

vanish - another collinear singularity.

Moreover, as |`| → ∞, power counting makes some terms look
logarithmically divergent, ∼

∫
dy
y

(ultraviolet divergence)
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Virtual result
Using dimensional regularization again takes care of these
problems - exposing both IR and UV poles

In our case, the result is:

σvirt ∼
CF αs

2π

(
−

2

ε2
−

3

ε
− 8 + O(ε)

)
σLO

Note that DR makes the contribution from our bubble diagrams
vanish. For this reason, sometimes the diagrams for self-energy
corrections on massless external quarks are not even written
down
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NLO total
All we need to do now is add up the two contributions:

σreal
CF αs

2π

(
+ 2

ε2
+ 3

ε
+ 19

2

)
σLO

+σvirt
CF αs

2π

(
− 2

ε2
− 3

ε
− 8

)
σLO

=σNLO correction
CF αs

2π
3
2 σLO

Plugging in the numbers gives the well-known result

σNLO =
(
1 +

αs

π

)
σLO

This correction ∼ 3% agrees well with very precise data from LEP
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NLO Monte Carlo’s
We’ve just been through a NLO calculation in a few slides. Can’t
we make every NLO prediction in this way?

? Unfortunately, the complexity of the matrix elements and the
phase space for increasing particle multiplicity means that the
integrals can only be performed in certain very simple cases

? For the result that I just showed, there were no constraints on
any of the particles. This isn’t realistic - when experimental
cuts are enforced, the integrals become even harder

? Moreover, every new type of cut implies a new calculation

For these reasons, flexible tools have been developed that
perform the NLO calculation numerically and in a general manner,
so that any desired experimental cuts can be applied

A NLO Monte Carlo is so-called because of the integration
technique that is used to evaluate the phase space integral over
the appropriate matrix elements
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Building a NLO Monte Carlo

Even though the procedure isn’t quite as simple as for our toy
example, the basic anatomy of the calculation is the same

? One has to calculate the virtual and real contributions and add
them together

? Each contribution is separately divergent

The divergence in the real contribution comes from the integration
over the phase space of the additional particle
(in particular, the soft and collinear regions)

This doesn’t bode well for a numerical procedure

The solution is to render the integrations finite in some way. This
is made possible by the factorization properties of QCD matrix
elements in soft and collinear limits
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Factorization
Examine the matrix element for e+e− → qq̄g again:

∑
|M|2 = 8NCF e4Q2g2 ×

(p1.q1)
2 + (p1.q2)

2 + (p2.q1)
2 + (p2.q2)

2

p1.p2 q1.k q2.k

e+

qe−

= q1 + q2 + k

p1 + p2

q̄

g

p1

p2

q1

q2

k

What happens in the soft limit, k → 0?
? Ignoring terms of O(k), p2.q1 → p1.q2 and p2.q2 → p1.q1

? Then we can write,∑
|M|2 → CF g2 2

p1.p2 q1.k q2.k
8Ne4Q2

(
(p1.q1)

2 + (p1.q2)
2
)

Equivalently,
∑

|M|2 → CF g2 2p1.p2

q1.k q2.k
|MLO|

2
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More factorization
We’ve seen that a cross-section factorizes when a gluon becomes
soft

What about the case when two partons are collinear?

k

q1

q̃1

zq̃1

(1 − z)q̃1

k = zq̃1 , q1 = (1 − z)q̃1

so that the gluon and
quark are collinear

In this limit, we find that a similar (but more complicated)
factorization occurs:

|Mqq̄g|
2 −→ 2g2CF

1

2q1.k
Pqq(z) × |Mqq̄|

2
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Splitting functions

Pqq is the Altarelli-Parisi splitting function which describes the
emission of a gluon of momentum fraction z from a quark

There are other functions that represent the processes of gluon
splitting into gluon pairs (Pgg) and quark-antiquark pairs (Pgq),
e.g.

Pgg =
z2 + (1 − z)2

z(1 − z)

Note the singularities both as z → 0 and z → 1, corresponding to
each gluon becoming soft.

Simple exercise: Using the matrix elements and the collinear
momemtum substitution given on the previous slides, derive the
splitting function Pqq

These functions are universal – they are sufficient to describe the
soft and collinear behaviour of all QCD matrix elements
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momemtum substitution given on the previous slides, derive the
splitting function Pqq

These functions are universal – they are sufficient to describe the
soft and collinear behaviour of all QCD matrix elements
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First steps towards a Monte Carlo

Since we now know the behaviour of our matrix elements in the
singular regions, it’s easy to envisage a generic method for
generating a finite real contribution:

? Calculate the real diagrams
? Identify all the soft and collinear divergences
? Construct terms that contain the same divergences and

subtract them:
∫

dPSLO+1

[
|Mreal|

2 −
(∑

counter − terms
)
× |MLO|

2
]

where the integral is over the phase space corresponding to
the lowest order process, plus one extra parton

The integral should now be perfectly well-defined and suitable for
numerical integration
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Virtual terms
We’ve dealt with the real diagrams, but what happens to the
divergences in the virtual contribution?

2Mvirt M
†
LO ∼

(
−

2

ε2
−

3

ε
+ A

)
|MLO|

2 + F

Clearly we must add back on the counter-terms that we just
subtracted from the real contribution:

∫
dPSLO+1

(∑
counter − terms

)
× |MLO|

2

By choosing a good parametrization, it is possible to factor the
phase-space into the lowest order phase space multiplied by a
region that represents the emission of an additional gluon:

dPSLO+1 −→ dPSLO × dPSgluon
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Virtual result
With this factorization, we can now integrate the counter-terms
over this reduced phase-space:

∫
dPSgluon (counter − terms) ∼

(
+

2

ε2
+

3

ε
+ B

)

The poles clearly cancel as before and we are left with a simple
finite integral over the lowest-order phase-space:

∫
dPSLO

(
(A + B)|MLO|

2 + F
)

What is remarkable is that the subtraction terms can be chosen
such that they are both completely general (QCD factorization)
and integrable (smart choices)

Next-to-Leading Order Tools for Colliders – p.22



Virtual result
With this factorization, we can now integrate the counter-terms
over this reduced phase-space:

∫
dPSgluon (counter − terms) ∼

(
+

2

ε2
+

3

ε
+ B

)

The poles clearly cancel as before and we are left with a simple
finite integral over the lowest-order phase-space:

∫
dPSLO

(
(A + B)|MLO|

2 + F
)

What is remarkable is that the subtraction terms can be chosen
such that they are both completely general (QCD factorization)
and integrable (smart choices)

Next-to-Leading Order Tools for Colliders – p.22



Virtual result
With this factorization, we can now integrate the counter-terms
over this reduced phase-space:

∫
dPSgluon (counter − terms) ∼

(
+

2

ε2
+

3

ε
+ B

)

The poles clearly cancel as before and we are left with a simple
finite integral over the lowest-order phase-space:

∫
dPSLO

(
(A + B)|MLO|

2 + F
)

What is remarkable is that the subtraction terms can be chosen
such that they are both completely general (QCD factorization)
and integrable (smart choices)

Next-to-Leading Order Tools for Colliders – p.22



NLO techniques

This isn’t the only way to do a NLO calculation - it’s an outline of
one technique, called the subtraction method

A popular modern variant of this is called dipole subtraction.
? It corresponds to a clever choice of the subtraction terms so

that this method can be applied to any QCD process, with a
basic set of integrals that can be recycled

? The subtraction terms are chosen with different kinematics in
each singular region in order to optimize cancellation

The other popular method is referred to as phase-space slicing.
? Rather than subtracting counter-terms, it approximates the

matrix elements in the soft and collinear region. An arbitrary
small parameter δ is introduced that specifies the extent of the
singular regions

? δ-dependence vanishes (numerically) in the final result

We will see examples of both of these techniques shortly
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What’s left to know?
So far we’ve only examined NLO corrections at an e+e− collider

At a hadron collider, the situation becomes more complicated. For
instance, consider the crossing-related process, Drell-Yan

Z

e−

e+

q

q̄

initial state radiation ∼ − 1
ε
Pqq

absorbed into redefinition of the
PDF’s at NLO

Z

e−

e+

g

q̄

additional processes enter – this
cross-section now becomes sensitive
to the gluon PDF

However, much of the machinery carries through as before
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What do we gain from NLO?

We expect to see many benefits when performing a NLO calculation
(examples coming soon):

Less sensitivity to unphysical input scales
? first predictive normalization of observables at NLO
? more accurate estimates of backgrounds for new physics

searches and (hopefully) interpretation
? confidence that cross-sections are under control for precision

measurements
More physics
? jet merging
? initial state radiation
? more parton fluxes

It represents the first step for a plethora of other techniques
? matching with resummed calculations, NLO parton showers
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NLO status
Given all the advantages of performing a NLO calculation, are the
theoretical advances keeping up with the pace of progress in Run II at
the Tevatron and construction at the LHC?

What’s the current state-of-the-art?
Why are we lacking NLO predictions for many interesting
processes that could be crucial to new physics discoveries in the
near future?
? traditional methods
? where the difficulties lie

What’s being done about it?
? promising new approaches

Survey of available NLO tools for hadron colliders
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An experimenter’s wishlist
Hadron collider cross-sections one would like to know at NLO

Run II Monte Carlo Workshop, April 2001

Single boson Diboson Triboson Heavy flavour
W + ≤ 5j WW + ≤ 5j WWW + ≤ 3j tt̄ + ≤ 3j
W + bb̄ + ≤ 3j WW + bb̄ + ≤ 3j WWW + bb̄ + ≤ 3j tt̄ + γ + ≤ 2j
W + cc̄ + ≤ 3j WW + cc̄ + ≤ 3j WWW + γγ + ≤ 3j tt̄ + W + ≤ 2j
Z + ≤ 5j ZZ + ≤ 5j Zγγ + ≤ 3j tt̄ + Z + ≤ 2j
Z + bb̄ + ≤ 3j ZZ + bb̄ + ≤ 3j WZZ + ≤ 3j tt̄ + H + ≤ 2j
Z + cc̄ + ≤ 3j ZZ + cc̄ + ≤ 3j ZZZ + ≤ 3j tb̄ + ≤ 2j
γ + ≤ 5j γγ + ≤ 5j bb̄ + ≤ 3j
γ + bb̄ + ≤ 3j γγ + bb̄ + ≤ 3j
γ + cc̄ + ≤ 3j γγ + cc̄ + ≤ 3j

WZ + ≤ 5j
WZ + bb̄ + ≤ 3j
WZ + cc̄ + ≤ 3j
Wγ + ≤ 3j
Zγ + ≤ 3j
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Theoretical status
Single boson Diboson Triboson Heavy flavour
W + ≤ 2j WW + ≤ 0j WWW + ≤ 3j tt̄ + ≤ 0j

W + bb̄ + ≤ 0j WW + bb̄ + ≤ 3j WWW + bb̄ + ≤ 3j tt̄ + γ + ≤ 2j

W + cc̄ + ≤ 0j WW + cc̄ + ≤ 3j WWW + γγ + ≤ 3j tt̄ + W + ≤ 2j

Z + ≤ 2j ZZ + ≤ 0j Zγγ + ≤ 3j tt̄ + Z + ≤ 2j

Z + bb̄ + ≤ 0j ZZ + bb̄ + ≤ 3j WZZ + ≤ 3j tt̄ + H + ≤ 0j

Z + cc̄ + ≤ 0j ZZ + cc̄ + ≤ 3j ZZZ + ≤ 3j tb̄ + ≤ 0j

γ + ≤ 1j γγ + ≤ 1j bb̄ + ≤ 0j

γ + bb̄ + ≤ 3j γγ + bb̄ + ≤ 3j
γ + cc̄ + ≤ 3j γγ + cc̄ + ≤ 3j

WZ + ≤ 0j

WZ + bb̄ + ≤ 3j
WZ + cc̄ + ≤ 3j
Wγ + ≤ 0j

Zγ + ≤ 0j
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Slow progress

Why has progress been so slow?
e+e− −→ 3 jets c. 1980

R. K. Ellis et al., 1981

e+e− −→ 4 jets c. 2000
Bern et al., Glover et al., 1996-7

More particles → many scales → lengthy analytic expressions

Integrals are complicated and process-specific:

∫
d4−2ε` 1

(`2−M2

1
)((`+p1)2−M2

2
)...

- different for:

p2
i 6= 0 W ,Z,H

M2
i 6= 0 t,b,. . .

��

��

���

�� �� �

��

��
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Complications

Fermions and non-Abelian couplings lead to more complicated
tensor integrals:

∫
d4−2ε`

`µ

(`2 − M2
1 )((` + p1)2 − M2

2 ) . . .

Passarino-Veltman reduction in terms of scalar integrals:

−→ c1p
µ
1 + . . . cn−1p

µ
n−1

where the ci are given by the solutions of (n − 1) equations

This gives rise to the (n − 1) × (n − 1) Gram determinant,
∆ = det(2pi · pj).

? large intermediate expressions
? spurious singularities
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Unitarity technique

�

� �

=
∫

dPS(`, `′)Mtree ×M′
tree

Mtree M′
tree

Standard tree-level tricks can be used to simplify amplitudes,
yielding compact results

e.g. Dixon, hep-ph/9601359

Rational functions of invariants cannot be obtained easily with this
method
Not easy to generalize and automate, simplification by hand
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Numerical approach

If all IR and UV singularities can be subtracted, perhaps loop
integrals can be done numerically

This method has many advantages:
? a general solution for many processes, regardless of internal

and external masses
? extension to large final-state multiplicites limited only by CPU

power
? presence of masses in general should simplify the procedure

(less singularities) rather than requiring much more work (cf.
analytical approach)

Several algorithms laid out, but no practical implementation so far
Nagy and Soper, hep-ph/0308127
Giele and Glover, hep-ph/0402152

Exciting prospect for the future, but probably not until the LHC
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NLOJET++
Author(s): Z. Nagy
http://www.ippp.dur.ac.uk/˜nagyz/nlo++.html
Multi-purpose C++ library for calculating jet cross-sections in e+e−

annihilation, DIS and hadron-hadron collisions.
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hep-ph/0110315

e+e− −→ ≤ 4 jets

ep −→ (≤ 3 + 1) jets

pp̄ −→ ≤ 3 jets
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AYLEN/EMILIA
Author(s): L. Dixon, Z. Kunszt, A.Signer, D. de Florian
http://www.itp.phys.ethz.ch/staff/dflorian/codes.html
Fortran implementation of gauge boson pair production at hadron
colliders, including full spin and decay angle correlations.

pp̄ −→ V V ′ and pp̄ −→ V γ with V, V ′ = W, Z

Anomalous triple gauge boson couplings at the LHC:

hep-ph/0002138
−→ F. Olness
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DIPHOX/EPHOX
Author(s): P. Aurenche, T.Binoth, M. Fontannaz, J. Ph. Guillet,
G. Heinrich, E. Pilon, M. Werlen
http://wwwlapp.in2p3.fr/lapth/PHOX_FAMILY/main.html
Fortran code to compute processes involving photons, hadrons and
jets in DIS and hadron colliders.

pp̄ −→ γ+ ≤ 1 jet

pp̄ −→ γγ

γp −→ γ+ jet

Preliminary H1 data,
hep-ph/0312070.
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MCFM
Author(s): JC, R. K. Ellis
http://mcfm.fnal.gov
Fortran package for calculating a number of processes involving vector
bosons, Higgs, jets and heavy quarks at hadron colliders.

hep-ph/0308195

pp̄ −→ V + ≤ 2 jets

pp̄ −→ V + bb̄

with V = W, Z.
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Heavy quark production
Author(s): M. L. Mangano, P. Nason and G. Ridolfi
http://www.ge.infn.it/˜ridolfi/hvqlibx.tgz
Fortran code for the calculation of heavy quark cross-sections and
distributions in a fully differential manner

Based on the more inclusive
calculations of Dawson et al,
Beenakker et al.
Does not include multiple
gluon radiation, log(pT /mb)
(FONLL)
Cacciari et al., hep-ph/9803400

These are the same ma-
trix elements that are in-
corporated into MC@NLO
Frixione et al., hep-ph/0305252 hep-ph/0312132

−→ R. K. Ellis
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Single top production
Author(s): B. W. Harris, E. Laenen, L. Phaf, Z. Sullivan, S. Weinzierl
(No public code released)

Fully differential calculation of single top production in hadron-hadron
collisions, via both channels:

MDF
PSS

�� � (GeV)
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200150100500
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0.0

hep-ph/0207055

(a) u + b −→ t + d

(b) u + d̄ −→ t + b̄

(a) (b)

−→ T. Tait
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Higgs + QQ̄
Author(s): S. Dawson, C. B. Jackson, L. H. Orr, L. Reina, D. Wackeroth;
W. Beenakker, S. Dittmaier, M. Kramer, B.Plumper, M. Spira, P. Zerwas
(No public code released)

Associated production of a Higgs and a pair of heavy quarks,

pp̄ −→ QQ̄H, with Q = t, b.

1/σtot dσ/dpT,H (pp → tt
_ 
H + X)

√s = 14 TeV

MH = 120 GeV

µ2 = p
T,H

2    + MH
2
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CTEQ5 PDF’s

hep-ph/0211352 hep-ph/0311216

−→

B. Kilgore

Next-to-Leading Order Tools for Colliders – p.39



HEPCODE database
A new initiative to maintain a list of available Monte Carlo codes,
including lowest order, NLO and resummed predictions

Eventual aim is to produce a searchable database
http://www.ippp.dur.ac.uk/˜wjs/HEPCODE/

HEPCODE PROGRAMME LISTING

Theideaof makinga comprehensivedatabaseof programmesfor crosssection
calculationsandeventsimulationsaroseoutof a discussionat theColliderPhysics
Conferenceat theKITP, SantaBarbarain January2004. Thedatabasewill eventuallybe
integratedinto theHEPDATA databasesin Durham, andwill incorporatea "search"
facility thatwill enableusersto identify a setof availableprogrammessimplyby entering
thedetailsof a particularscatteringprocess. In themeantime, we needto build upa
comprehensivelist of all availablecodes. Theemphasissofar is onhadron-collider
processes, but it is hopedto eventuallyincludealsoa comprehensivelist for other
colliders.

Commentsonthelist below(for example, if yourprogrammeis listedbut theinformationis
incomplete/incorrect) andparticularlysuggestionsfor newentriesareverywelcomeand
shouldbesentto JamesStirling (IPPP, Durham) at w.j.stirling@durham.ac.uk, usingthe
automatedsubmissiontool.

(Thanksto: JohnCampbell, GuentherDissertori, ThomasGehrmann, Bill Kilgore, AdrianSigner)

Key

ee, ep, ppareusedasshorthandfor electron-positron, lepton-hadron, andproton-
(anti)protoncollisionsrespectively

V = W or Z, andsometimesalsoa Drell-Yanvirtual photon, g = realphoton, l =
lepton, H = Higgsboson

j = light (u,d,s,c?) quarkor gluonjet; Q = genericheavy(c?,b,t) quark

TL = treelevel; PS= partonshower; NLO = NLO QCD, NNLO = NNLO QCD;
NLOEW = NLO electroweak, RS=resummed

F = Fortran, C = C++

Name/
description processes

order code ? authors comments

VECBOS pp V + <=4j TL yes F W. Giele

ALPGEN pp
V + QQbar+
<=4j
V + <=6j
V + c + <=5j

TL yes F M. Mangano
M. Moretti
F. Piccinini
R. Pittau
A. Polosa

a collectionof
codesfor the
generationof multi-
partonprocessesin
hadroniccollisions

nV + mH + <=3j
QQbar+ <=6j
QQbar+ Q'Q'bar
+ <=4j
QQbar+ H +
<=4j
<=6j
ng+ mj,
n+m<=8, m<=6

basedontheAlpha
matrixelement
generator

MADEVENT TL yes F T. Stelzer
F. Maltoni

combines
MADGRAPH
matrixelement
calculationswith
phasespace
integration

HELAC TL yes F C.
Papadopoulos

AMEGIC++ TL yes C F. Krauss

GRACE TL yes F

GR@PPA pp
bbbar+ bbbar
V + <=3j
VV'
ttbar
W + <=2g

TL yes F S. Tsuno
S. Shimma
J. Fujimoto
T. Ishikawa
Y. Kurihara
S. Odaka

anextensionof the
GRACEsystemto
hadroncollider
processes; includes
full decaysof vector
bosonsandtop
quarks; canbe
embeddedin
PYTHIA and
HERWIG

COMPHEP TL yes F A. Pukhov
E. Boos
M. Dubinin
V. Edneral
V. Ilyin
D. Kovalenko
A. Kryukov
V. Savrin
S. Shichanin
A. Semenov

AcerMC pp ... TL yes F B. Kersevan
E. Richter-
Was

generatesa variety
of StandardModel
background
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Where now for NLO?
As we’ve seen, NLO calculations are very useful for improving our
understanding in many cases

Unfortunately, they also have a number of drawbacks
? Existing calculations are spread out over many different codes

? Predictions are limited to fairly low particle-multiplicity (2 → 3)
processes

? The programs are parton-level only, so there’s no
hadronization and no simulation of detector effects

? Morever, the ‘events’ have both positive and negative weights

All of these drawbacks aren’t a problem for a parton shower
Monte Carlo such as PYTHIA or HERWIG
There’s recently been much work to try to merge these two
approaches. The most successful program to date is MC@NLO

S. Frixione and B. R. Webber, hep-ph/0402116

Expect more progress in this direction in the future
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Thoughts to leave with ...

NLO tools are an invaluable aid to experimental studies now and
will continue to be so in the future

It’s important to have at least a basic grasp of the underlying
theory, if only to appreciate the feasibility of a desired calculation
? Even though PYTHIA and HERWIG have been the simulation

tools of choice in the past, it’s likely that the next generation of
programs will be based on a NLO core

There are many programs available for making NLO predictions at
the Tevatron and the LHC, in a variety of forms:
? author-controlled

single top, H + QQ̄

? single class of processes
V γ, QQ̄

? generic programs
NLOJET++, PHOX-family, MCFM
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